In this joint work with Athanasios Tzavaras (KAUST) and Corrado Lattanzio (L’Aquila) we develop a relative entropy framework for Hamiltonian flows that in particular covers the Euler-Korteweg system, a well-known diffuse interface model for compressible multiphase flows. We put a particular emphasis on extending the relative entropy framework to the case of non-monotone pressure laws which make the energy functional non-convex.The relative entropy computation directly implies weak (entropic)-strong uniqueness, but we will also outline how it can be used in other contexts. Firstly, we describe how it can be used to rigorously show that in the large friction limit solutions of Euler-Korteweg converge to solutions of the Cahn-Hilliard equation. Secondly, we explain how the relative entropy can be used for obtaining a posteriori error estimates for numerical approximation schemes.
Recording during the meeting "Inhomogeneous Flows: Asymptotic Models and Interface Evolution " the September 24 2019 at the Centre International de Rencontres Mathématiques (Marseille, France)
Filmmaker: Guillaume Hennenfent
Find this video and other talks given by worldwide mathematicians on CIRM's Audiovisual Mathematics Library: http://library.cirm-math.fr. And discover all its functionalities:
- Chapter markers and keywords to watch the parts of your choice in the video
- Videos enriched with abstracts, bibliographies, Mathematics Subject Classification
- Multi-criteria search by author, title, tags, mathematical area
Jan Giesselmann: Relative entropy for the Euler-Korteweg system with non-monotone pressure smflみらいパートナーズ | |
| 3 Likes | 3 Dislikes |
| 29 views views | 10K followers |
| Science & Technology | Upload TimePublished on 14 Oct 2019 |
Không có nhận xét nào:
Đăng nhận xét